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Abstract:  In this research paper, the continuous Block Hybrid explicit methods for k=4 was derived from Adams Bashforth 

methods. The continuous scheme was evaluated at different points to obtain discrete schemes. The order, error 

constant, zero stability and consistency of the resulting discrete schemes were ascertained. The region of absolute 

stability of the block hybrid scheme was plotted. The schemes were experimented in solving some stiff and non 

stiff initial value problems (IVP) in block form. It was observed that the block hybrid explicit methods obtained in 

this work performed better than the conventional Adams Bashforth method in terms of Accuracy, Efficiency and 

Stability. 
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Introduction 

The limitation of analytical means in finding an exact solution 

to most modeled equations cannot be over emphasized. It then 

becomes necessary to apply numerical methods when faced 

with such problems. By numerical method, we mean a 

difference equation involving the number of consecutive 

approximation , ... k , , jy jn 10 , from which it will be 

possible to compute sequentially the sequence 

, ...N;, /nyn 10  the k is called the step number of the 

method. These numerical methods use the available discrete 

numerical integration algorithms in which the numerical 

approximations are obtained at some specific points in the 

interval of integration. 

Initial value problems (IVP) is defined as any differential 

equation of the form  

    
  








bxayxy

xyxfxy

,

, 

0   (1.1) 

on a given mesh, 

bNxxa  ......20  With a mesh size 

The numerical solution of (1.1) is a major focus of this paper. 

The linear multistep method (LMM), though efficient with 

regards to accuracy for a given number of functions 

evaluation per step, suffer the pitfall of poor stability property 

as step number increases. However, it was observed that some 

of the difficulties inherent in the linear multistep -methods can 

be reduced by lowering the step number and increasing the 

order without reducing the stability interval. This gives rise to 

the idea of a hybrid scheme. It is called hybrid because it 

possess some properties of LMM and that of Runge-Kutta 

methods (Stells & Gragg in Butcher & Burrage, 2004).  

We therefore define K-hybrid scheme as follows: 

vnvjnjn fhfhyj 

 

  
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where 1k , 0  and 0B  are not both zero and V € {0, 

1… k} and )  ,( vnvnvn ykff    which is the off-grid 

function evaluation. One main disadvantage of the hybrid 

scheme is that they require special predictor to predict the off-

grid points. In this paper, this problem is solved with the use 

of block method. 

The block method is purposed to ease computational effort 

and prevent the use of starting values for the hybrid discrete 

schemes. These schemes are obtained by evaluating the 

various continuous schemes at both grid and off-grid points as 

the case may be, which are then simplified to obtain the block 

method of each scheme.  

 

Derivation Techniques  

Consider the initial value problem (1.1)  

    yoaybxayxfy  ,;,/
, 

on a given mesh bxxxxoa m  ...21 , 

where ,,1,0,1 nnxxh nn    where h is a constant 

step and k is the step number of the method. 

In order to solve equation (1.1) Onumanyi et al. (1994) 

developed a linear multistep method with continuous 

coefficient by the idea of multistep collocations. 
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to get  xj  and 
 

,
x

j  Sirisena [2003] used the matrix 

equation of the form 

DC=I ------------------------------------ (2.2)  

where I is the identity matrix of dimension (t+m) x (t+m) 

while D and C are matrices defined as: 
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 ----- (2.3) 

The above matrix (2.3) is the multistep collocation matrix of 

dimension (t+m) x (t+m), and  

----- (2.4) 

 
We define t as the number of interpolation points used while 

m is the number of collocation points used. The columns of 

the matrix C =D-1 gives the continuous coefficients 

  1 ,1 ,0 ,  kjxj  and   1  ..... ,1 ,0 ,  kjxj   

 

Block hybrid explicit methods of step number K=4 

Consider the discrete Adams Bashforth method of order 2 
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Expressing (3.1) in the general form gives; 
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Introducing one off grid collocation points at 
2
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and the resultant matrix is given below as, 
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The elements of matrix C are obtained from the inverse of D by the use of maple 7 software and after simplification we obtain 

the continuous form expressed as 

  xy   
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Evaluating (3.5) at 431
2

321
4

3   and   , ,  , , ,   nnnnnnnn xxxxxxxxxx  yields the following discrete schemes 

as shown below; 

 

Four-step block hybrid explicit methods (BHEM) 

 

 

 
 

…………………… (4.1) 

 

 

The scheme is consistent and zero stable; hence it is 

convergent. 

In summary, the block method has the following order and 

error constants 

 

Table 1: Order and error constants for BHEM k=4 

Evaluating Point Order Error constants 

nxX   5 -0.0004122 

2

3



n

xX  5 -0.0002478 

2 nxX  5 0.0112649 

2

5



n

xX  5 0.0006422 

3 nxX  5 0.031542 

 

The methods are all convergent since there are all consistent 

and zero-stable. 

 

Stability regions of the block hybrid explicit methods 

To plot the region of absolute stability of the block hybrid 

method, the newly constructed methods are reformulated as 

General Linear Methods and expressed as  
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The elements of u and v are obtained from the interpolation 

and collocation points respectively. The elemenst of the 

matrices A, B, U and V are substituted into the stability 

matrix 

   
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1
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  ------------------- (5.2) 

and the stability function     zMIzP   det  , ------ (5.3) 
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Using maple 7 software gives the stability polynomial below; 
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Using MATLAB software and stability polynomial the 

stability region of the block method is plotted and is shown to 

be A-SATBLE (Fig. 1). 

Region of absolute stability graph for block hybrid Adams 

Bashforth for k=4 with off grid points at x=xn+3/2 and x=xn+5/2 

 

 
Fig.  1: Region of absolute stability of BHEM K=4 

 

From the graph the BHEM for K=4 is A-stable   

 

Numerical experiment 

We report here a numerical example on stiff problem taken 

from the literature using the solution curve. In comparison, we 

also report the performance of the new blended block linear 

multistep methods and the well-known Matlab stiff ODE 

solver ODE15S on the same problems and on the same axes.  

 

Problem 1: Euler’s equation of motion for a rigid body 

without external forces 

𝑦1
′ = 𝑦2𝑦3  

 

 𝑦2
′ = −𝑦1𝑦2 

𝑦3
′ = −5.1𝑦1𝑦2 

𝑦1(0) = 0, 𝑦2(0) = 1, 𝑦3(0) = 1  

0 10,   0 1x h .  
   

 

 

Problem 2:  Linear stiff system of ODE 

𝑦1
′ = −500000.5 𝑦1 + 4.99999.5 𝑦2  

𝑦2
′ = 499999.5𝑦1 − 500000.5 𝑦2  

𝑦1(0) = 0, 𝑦2(0) = 2       0 100,   0 1x h .    

Theoretical solution is given by; 

𝑦1(𝑡) = −𝑒𝑡𝜆1 + 𝑒𝑡𝜆2 ,       𝑦2(𝑡) = 𝑒𝑡𝜆1 − 𝑒𝑡𝜆2    

 

 

 
Fig. 2: Solution curve for Problem 1 

 

 

Table 2:  Absolute errors of the first component for 

Problem 2 (k=4) 

h=0.1 HLMM 4 Error 

0 0.0000E+00 

0.1 5.9851E-04 

0.2 2.9876E-04 

0.3 2.9824E-04 

0.4 2.9761E-04 

0.5 2.9697E-04 

0.6 2.9634E-06 

0.7 2.9571E-06 

0.8 2.9508E-08 

0.9 2.9445E-10 

1.0 2.9382E-10 

1.1 2.9320E-10 

1.2 2.9257E-12 

1.3 2.9195E-12 

1.4 2.9133E-12 

1.5 2.9071E-12 

1.6 2.9009E-14 

1.7 2.8947E-14 

1.8 2.8885E-14 

1.9 2.8823E-16 

2.0 2.8823E-16 
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The solutions curve in Fig. 2 shows that our method BHEM 

compete favourably with the ODE solver 15s. From problem 

2, Table 2 shows that our methods performed well with 

marginal absolute error constants. From the stiff ode problems 

solved, BHEM tend to converge much faster to the theoretical 

solution. The method is therefore recommended for the 

solutions of mildly initial value problem. 

 

Conclusion 
A block hybrid explicit method has been constructed through 

the multistep collocation approach. The Region of absolute 

stability of the explicit BHEMs has been greatly enhanced (A-

stable). These methods are all convergent. Numerical results 

reveal that the BHEMs tend to converge much faster to the 

theoretical solution in problem 2 in table 2 and the solution 

curve in problem 1 which shows the efficiency of the methods 

in solving stiff systems despite the fact that they are explicit 

methods.  

 

Reference 
Chollom JP & Jackiewicz Z 2003. Construction of two step 

Runge-Kutta (TSRK) methods with large regions of 

absolute stability. Compt. and Appl. Maths., 157: 125-

137. 

Fatula SO 1980. Numerical Integration for Stiff and Highly 

Oscillatory Differential Equations. 

Fatula SO 1987. Highly stable multistep method for IVP; 

Abacus Vol. 17(2). 

Fatula SO 1988. Computer Science and Scientific 

Computational Numerical Method for Initial Value 

Problem in Ordinary Differential equations (Academic 

Press Inc). 

Fatula SO 1988. Numerical method for initial value problem 

in ODEs. Int. J. Comp. Math., Vol. 26. 

Butcher JC & Burrage K 1980. Non-linear stability for a 

general class of differential equation methods. BIT, 20: 

185-203 

Butcher JC 2003. Numerical Methods for Ordinary 

Differential Equations, John Wiley and Son Ltd.  

Butcher JC & Jackiewicz Z 2004. Construction of general 

linear methods with Runge Kutta stability properties. 

Numerical Algebra, 36: 35-72. 

Butcher JC & Jackiewicz Z 1996. Construction of diagonal 

implicit general linear of type 1&2 for ODEs. Appl. 

Numerical Math., 21: 385- 415. 

Butcher JC, Jackiewicz Z & Mittelmann HD 1997. Non linear 

optimization approach to the Construction of general 

linear methods of high order. Jinr. Comput. Appl. Math., 

81: 107-126. 

Butcher JC 2006. General linear methods. Acta Numerical, 

15: 157-256. 

Butcher JC & Wright WM 1998. The construction of practical 

general linear methods. BIT., 43: 695-721. 

Brugnano L & Trigiante D 1998. Solving Differential 

Problem by Multistep Initial and Boundary Value 

Methods. Gordon and Breach Science Publ.  

Brugnano L & Trigiante D 2011. Block implicit methods for 

ODEs. In: Recent Trends in Numerical Analysis. D. 

Trigiante ed. Nova science publ. Inc., New York, pp. 81-

105.  

Lambert JD 1972. Computational Mathematics in Ordinary 

Differential Equation. John Wiley and Sons Inc., 

London. 

Onumanyi PA, Jator NS & Sirisena UW 1994. New Linear 

Multistep Methods with continuous coefficients for first 

order IVPs. Journal of NMS, 31(1): 37–51. 

 

 

 

 

http://www.ftstjournal.com/

